Factorization with Erroneous Data

نویسندگان

  • Henrik Aanæs
  • Rune Fisker
  • Jens Michael Carstensen
چکیده

Factorization algorithms for recovering structure and motion from an image stream have many advantages, but traditionally requires a set of well tracked feature points. This limits the usability since, correctly tracked feature points are not available in general. There is thus a need to make factorization algorithms deal successfully with incorrectly tracked feature points. We propose a new computationally efficient algorithm for applying an arbitrary error function in the factorization scheme, and thereby enable the use of robust statistical techniques and arbitrary noise models for individual feature points. These techniques and models effectively deal with feature point noise as well as feature mismatch and missing features. Furthermore, the algorithm includes a new method for Euclidean reconstruction that experimentally shows a significant improvement in convergence of the factorization algorithms. The proposed algorithm has been implemented in the Christy–Horaud factorization scheme and the results clearly illustrate a considerable increase in error tolerance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B?J/?(?,K) Decays within QCD Factorization Approach

We used QCD factorization for the hadronic matrix elements to show that the existing data, in particular the branching ratios BR ( ?J/?K) and BR ( ?J/??), can be accounted for this approach. We analyzed the decay within the framework of QCD factorization. We have complete calculation of the relevant hard-scattering kernels for twist-2 and twist-3. We calculated this decays in a special scale ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012